数学笔记1-6年级 小学数学一至六年级的笔记?

[更新]
·
·
分类:行业
2387 阅读

数学笔记1-6年级

小学数学一至六年级的笔记?

小学数学一至六年级的笔记?

1、长方形的周长(长 宽)×2 C(a b)×22、正方形的周长边长×4 C4a3、长方形的面积长×宽 Sab4、正方形的面积边长×边长 Sa.a a5、三角形的面积底×高÷2 Sah÷26、平行四边形的面积底×高 Sah7、梯形的面积(上底 下底)×高÷2 S(a+b)h÷28、直径半径×2 d2r 半径直径÷2 r d÷29、圆的周长圆周率×直径圆周率×半径×2 cπd 2πr10、圆的面积圆周率×半径×半径 ?πr11、长方体的表面积(长×宽 长×高+宽×高)×212、长方体的体积 长×宽×高 V abh13、正方体的表面积棱长×棱长×6 S 6a14、正方体的体积棱长×棱长×棱长 Va.a.a a15、圆柱的侧面积底面圆的周长×高 Sch16、圆柱的表面积上下底面面积 侧面积S2πr 2πrh2π(d÷2) 2π(d÷2)h2π(C÷2÷π) Ch17、圆柱的体积底面积×高 VShVπr hπ(d÷2) hπ(C÷2÷π) h18、圆锥的体积底面积×高÷3VSh÷3πr h÷3π(d÷2) h÷3π(C÷2÷π) h÷319、长方体(正方体、圆柱体)的体1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率6、 加数+加数=和 和-一个加数=另一个加数7、 被减数-减数=差 被减数-差=减数 差+减数=被减数8、 因数×因数=积 积÷一个因数=另一个因数9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数小学数学图形计算公式1 、正方形 C周长 S面积 a边长 周长=边长×4 C4a 面积边长×边长 Sa×a2 、正方体 V:体积 a:棱长 表面积棱长×棱长×6 S表a×a×6 体积棱长×棱长×棱长 Va×a×a3 、长方形C周长 S面积 a边长周长(长 宽)×2C2(a b)面积长×宽Sab4 、长方体V:体积 s:面积 a:长 b: 宽 h:高(1)表面积(长×宽 长×高 宽×高)×2S2(ab ah bh)(2)体积长×宽×高Vabh5 三角形s面积 a底 h高面积底×高÷2sah÷2三角形高面积 ×2÷底三角形底面积 ×2÷高6 平行四边形s面积 a底 h高面积底×高sah7 梯形s面积 a上底 b下底 h高面积(上底 下底)×高÷2s(a b)× h÷28 圆形S面积 C周长 ∏ d直径 r半径(1)周长直径×∏2×∏×半径C∏d2∏r(2)面积半径×半径×∏9 圆柱体v:体积 h:高 s底面积 r:底面半径 c:底面周长(1)侧面积底面周长×高(2)表面积侧面积 底面积×2(3)体积底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积 h:高 s底面积 r:底面半径体积底面积×高÷3总数÷总份数=平均数和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者 和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或 小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)时间单位换算1世纪100年 1年12月大月(31天)有:135781012月小月(30天)的有:46911月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日24小时 1时60分1分60秒 1时3600秒积底面积×高 VSh第一部分: 概念1、加法交换律:两数相加交换加数的位置,和不变。2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。3、乘法交换律:两数相乘,交换因数的位置,积不变。4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2 4)×5=2×5 4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8、什么叫方程式?答:含有未知数的等式叫方程式。9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。15、分数除以整数(0除外),等于分数乘以这个整数的倒数。16、真分数:分子比分母小的分数叫做真分数。17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。18、带分数:把假分数写成整数和真分数的形式,叫做带分数。19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数0除外),分数的大小不变。20、一个数除以分数,等于这个数乘以分数的倒数。21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。分数的乘法则:用分子的积做分子,用分母的积做分母。22、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。23、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:1824、比例的基本性质:在比例里,两外项之积等于两内项之积。25、解比例:求比例中的未知项,叫做解比例。如3:χ=9:1826、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/xk( k一定)或kxy27、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y k( k一定)或k / x y28、百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。29、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。30、把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。31、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。32、把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。33、要学会把小数化成分数和把分数化成小数的化发。34、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)35、互质数: 公约数只有1的两个数,叫做互质数。36、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。37、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)38、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)39、最简分数:分子、分母是互质数的分数,叫做最简分数。40、分数计算到最后,得数必须化成最简分数。41、个位上是0、2、4、6、8的数,都能被2整除,即能用2进行42、约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。43、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。44、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。45、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。46、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)47、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。48、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。49、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 14141450、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如圆周率:3. 14159265451、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……52、什么叫代数? 代数就是用字母代替数。53、什么叫代数式?用字母表示的式子叫做代数式。如:3x ab c第二部分:定义定理一、算术方面1.加法交换律:两数相加交换加数的位置,和不变。2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。3.乘法交换律:两数相乘,交换因数的位置,积不变。4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2 4)×5=2×5 4×5。6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8.方程式:含有未知数的等式叫方程式。9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。15.分数除以整数(0除外),等于分数乘以这个整数的倒数。16.真分数:分子比分母小的分数叫做真分数。17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。18.带分数:把假分数写成整数和真分数的形式,叫做带分数。19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。20.一个数除以分数,等于这个数乘以分数的倒数。21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。第三部分:几何体1.正方形正方形的周长边长×4 公式:C4a正方形的面积=边长×边长 公式:Sa×a正方体的体积=边长×边长×边长 公式:Va×a×a2.正方形长方形的周长(长 宽)×2 公式:C(a b)×2长方形的面积长×宽 公式:Sa×b长方体的体积=长×宽×高 公式:Va×b×h3.三角形三角形的面积=底×高÷2。 公式:S a×h÷24.平行四边形平行四边形的面积=底×高 公式:S a×h5.梯形梯形的面积=(上底 下底)×高÷2 公式:S(a b)h÷26.圆直径半径×2 公式:d2r半径直径÷2 公式:r d÷2圆的周长圆周率×直径 公式:cπd 2πr圆的面积=半径×半径×π 公式:S=πrr7.圆柱圆柱的侧面积底面的周长×高。 公式:Schπdh=2πrh圆柱的表面积底面的周长×高 两头的圆的面积。 公式:Sch 2sch 2πr2圆柱的总体积底面积×高。 公式:VSh8.圆锥圆锥的总体积=底面积×高×1/3 公式:V1/3Sh三角形内角和=180度。平行线:同一平面内不相交的两条直线叫做平行线垂直:两条直线相交成直角,像这样的两条直线,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。第四部分:计算公式数量关系式: 1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率6、 加数+加数=和 和-一个加数=另一个加数7、 被减数-减数=差 被减数-差=减数 差+减数=被减数8、 因数×因数=积 积÷一个因数=另一个因数9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数******************************************************和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者 和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或 小数+差=大数)******************************************************植树问题:1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数******************************************************盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数******************************************************相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间******************************************************追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间******************************************************流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2******************************************************浓度问题:溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量******************************************************利润与折扣问题:利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)******************************************************面积,体积换算(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米(4)1公顷=10000平方米 1亩=666.666平方米(5)1升=1立方分米=1000毫升 1毫升=1立方厘米******************************************************重量换算:1吨1000 千克1千克1000克1千克1公斤******************************************************人民币单位换算1元10角1角10分1元100分******************************************************时间单位换算:1世纪100年 1年12月大月(31天)有:135781012月小月(30天)的有:46911月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日24小时 1时60分1分60秒 1时3600秒

小学生数学读书笔记怎么写?

最近读《数学思维与小学数学》(郑毓信著),感触颇深。书中讲到:小学数学,特别是低年级数学教学的一个特殊之处:我们应以数学为素材,也即通过具体数学知识的教学帮助学生学会抽象、类比等一般的思维方法,同时又应当帮助学生超越一般思维走向数学思维,也即初步的领悟到数学思维的特殊性,从而就能在“学会数学的思维”这一方向上迈出坚实的第一步。只有通过深入的揭示隐藏在数学知识内容背后的思维方法,我们才能真正的做到将数学课“讲活”、“讲懂”、“讲深”。这就是指,教师应通过自己的教学活动向学生展现“活生生的”数学研究工作,而不是死的数学知识;教师并应帮助学生真正理解有关的教学内容,而不是囫囵吞枣,死记硬背;教师在教学中又不仅使学生掌握具体的数学知识,而且也应帮助学生深入领会并逐渐掌握内在的思维方法。
  小学生学习数学,是在基本知识的掌握过程中,不断形成数学能力、数学素养,获取多角度思考和看待问题的方法,从而“数学的”思考和解决问题。基本知识的掌握是途径,多角度的思维方式的获取才是最终目的。法国教育家第斯多惠说:“一个不好的教师奉送真理,一个好的教师则教人发现真理。”学生学习数学是一种活动,一种经历,一个过程,活动和过程是不能告诉的,只能参与和体验。因此,教师要改变以书本知识、教学为中心,以教师传递、学生接受的学习方式,把学习的主动权教给学生使学生在操作体验中获得对知识的真实感受,这是学生形成正确认识,并转化为能力的原动力。正如华盛顿儿童博物馆墙上醒目的格言:“做过的,浃髓沦肌。”