线性方程组的自由项怎么确定
非齐次线性方程组非零解指什么?
非齐次线性方程组非零解指什么?
非齐次线性方程组的通解=齐次线性方程组的通解+非齐次线性方程组的一个特解(η=ζ+η*)。非齐次线性方程组是常数项不全为零的线性方程组。
非齐次线性方程组解法:
非齐次线性方程组Axb的求解步骤:
(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)R(B),则方程组无解。
(2)若R(A)R(B),则进一步将B化为行最简形。
(3)设R(A)R(B)r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于C1,C2……,Cn-r,即可写出含n-r个参数的通解。
自由未知量的选取方法?
自由未知量的一般选取方法:
先将系数矩阵经初等行变换化成行简化梯矩阵,非零行的首非零元所在列对应的是约束未知量,其余未知量即为自由未知量
由上面的选取方法可知:
约束未知量所在列即构成A的列向量组的一个极大无关组,自由未知量所在列可由此极大无关组唯一线性表示,这样就能保证:对于自由未知量任取一组数都能唯一解出约束未知量。
线性方程组如何求特解自由向量?
特解是由该矩阵经过行列变换后变为标准式,那么这个标准矩阵和原来的矩阵所代表的方程组是同解的。所以就由标准矩阵列出同解方程组,然后得出该方程组特解。
具体解法为:
(1)将原增广矩阵行列变换为标准矩阵。
(2)根据标准行列式写出同解方程组。
(3)按列解出方程。
(4)得出特解。
线性方程组的通解由特解和一般解合成。一般解是AX0求出来的,特解是由AXB求出来。形式为Xη0 k*η。
扩展资料:
非齐次线性方程组Axb的求解步骤:
(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)ltR(B),则方程组无解。
(2)若R(A)R(B),则进一步将B化为行最简形。
(3)设R(A)R(B)r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于
,即可写出含n-r个参数的通解。非齐次线性方程组
有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(A)rank(A, b)(否则为无解)。
非齐次线性方程组有唯一解的充要条件是rank(A)n。
非齐次线性方程组有无穷多解的充要条件是rank(A)ltn。(rank(A)表示A的秩) [2]
解的结构:非齐次线性方程组的通解齐次线性方程组的通解 非齐次线性方程组的一个特解(ηζ η*)