matlab如何计算正态分布概率分布
MATLAB如何处理数据异常正态分布?
MATLAB如何处理数据异常正态分布?
在进行正态分布建模时,先对数据进行数据过滤,去掉数据中的噪声。
积差相关计算?
相关系数:考察两个事物(在数据里我们称之为变量)之间的相关程度。 如果有两个变量:X、Y,最终计算出的相关系数的含义可以有如下理解: (1)、当相关系数为0时,X和Y两变量无关系。 (2)、当X的值增大(减小),Y值增大(减小),两个变量为正相关,相关系数在0.00与1.00之间。 (3)、当X的值增大(减小),Y值减小(增大),两个变量为负相关,相关系数在-1.00与0.00之间。 相关系数的绝对值越大,相关性越强,相关系数越接近于1或-1,相关度越强,相关系数越接近于0,相关度越弱。 通常情况下通过以下取值范围判断变量的相关强度: 相关系数 0.8-1.0 极强相关 0.6-0.8 强相关 0.4-0.6 中等程度相关 0.2-0.4 弱相关 0.0-0.2 极弱相关或无相关 Pearson(皮尔逊)相关系数 1、简介 皮尔逊相关也称为积差相关(或积矩相关)是英国统计学家皮尔逊于20世纪提出的一种计算直线相关的方法。 2、适用范围 当两个变量的标准差都不为零时,相关系数才有定义,皮尔逊相关系数适用于: (1)、两个变量之间是线性关系,都是连续数据。 (2)、两个变量的总体是正态分布,或接近正态的单峰分布。 (3)、两个变量的观测值是成对的,每对观测值之间相互独立。 3、Matlab实现 皮尔逊相关系数的Matlab实现(依据公式四实现): [cpp] view plaincopy function coeff myPearson(X , Y) % 本函数实现了皮尔逊相关系数的计算操作 % % 输入: % X:输入的数值序列 % Y:输入的数值序列 % % 输出: % coeff:两个输入数值序列X,Y的相关系数 % if length(X) ~ length(Y) error(两个数值数列的维数不相等) return end fen户i sum(X .* Y) - (sum(X) * sum(Y)) / length(X) fenmu sqrt((sum(X .^2) - sum(X)^2 / length(X)) * (sum(Y .^2) - sum