配对t检验和独立样本t检验的区别
t检验的检验值一般是多少?
t检验的检验值一般是多少?
t检验值大于2的时候显著。
双总体t检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。双总体t检验又分为两种情况,一是独立样本t检验(各实验处理组之间毫无相关存在,即为独立样本),该检验用于检验两组非相关样本被试所获得的数据的差异性。
一是配对样本t检验,用于检验匹配而成的两组被试获得的数据或同组被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本。
配对t检验中检验统计量的计算公式是?
语言配对t检验样本量计算
在R语言中pwr包给我们提供了一系列的样本量计算公式,t检验的样本量计算公式如下:
pwr.t.test(n NULL, d NULL, sig.level 0.05, power NULL,
type c(, , paired),
alternative c(, less, greater))
其中,n是样本量,d为标准化的均值之差,sig.level为检验水平,power为减压功效,type为检验类型(单样本、配对等),alternative单双侧检验,默认为双侧。
双因素方差分析和配对t检验区别?
1。首先可以看到方差分析(ANOVA)包含两样本T检验,把两样本T检验作为自己的特例。
因为ANOVA可以比较多个总体的均值,当然包含两个总体作为特例。实际上,T的平方就是F统计量(m个自由度的T分布之平方恰为自由度为(1,m)的F 分布。因此,这时候二者检验效果完全相同。T 检验和 ANOVA 检验对于所要求的条件也相同:
1)各个组的样本数据内部要相互独立,
2)各组皆要正态分布
3)各总体的方差相等。
上述这3个条件完全相同。
2。如果说要指出差别,则区别仅在下列一点上:
用ANOVA检验两总体均值相等性时,只限于这样的双侧检验问题,即:
H0:mu1MU2 lt-gt Ha:mu1 not mu2
而两样本的T检验则可以比上述情况更广泛,对立假设可以是下面3种中的任何一种.
Ha:mu1 gt mu2
Ha:mu1 lt mu2
Ha:mu1 not mu2
这样说来,两样本均值相等性检验虽然可以用ANOVA做, 但这没有任何好处,反而使得对立假设受到限制,因而还是T检验更好。
其他表述:
t检验与方差分析,主要差异在于,t检验一般使用在单样本或双样本的检验,方差分析用于2个样本以上的总体均值的检验.同样,双样本也可以使用方差分析, 多样本也可以使用t检验,不过,t检验只能是所有总体两两检验而已.
两种方法与样本量没有直接关系,而是与数据的分布有关系,如果数据是正态分布的,那不管是小样本或大样本,利用莱维-林德伯格中心极限定理的原理,都是可 以用的,如果数据非正态分布,那只能使用大样本利用李雅普诺夫中心极限定理的原理进行2t检验,此时不能利用方差分析,因为方差分析三个条件之一就是正态 分布.