曲面积分奇偶性判断公式
曲线积分怎么计算?
曲线积分怎么计算?
曲线积分公式:wGh。在数学中,曲线积分是积分的一种。积分函数的取值沿的不是区间,而是特定的曲线,称为积分路径。曲线积分有很多种类,当积分路径为闭合曲线时,称为环路积分或围道积分。曲线积分可分为:第一类曲线积分和第二类曲线积分。
曲线,是微分几何学研究的主要对象之一。直观上,曲线可看成空间质点运动的轨迹。微分几何就是利用微积分来研究几何的学科。为了能够应用微积分的知识,我们不能考虑一切曲线,甚至不能考虑连续曲线,因为连续不一定可微。这就要我们考虑可微曲线
二重积分关于y是偶函数?
f(x,-y)=f(x,y)就说明f(x,y)是y的偶函数,f(x,-y)=-f(x,y)就说明f(x,y)是y的奇函数。
f(-x,y)=f(x,y)就说明f(x,y)是x的偶函数,f(-x,y)=-f(x,y)就说明f(x,y)是x的奇函数。
区域关于x轴对称,要看被积函数关于y的奇偶性。
区域关于y轴对称,要看被积函数关于x的奇偶性。
同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。
几何意义:
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。
某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
积分弧段的对称性和奇偶性?
曲线的对称性,奇偶性是指根据对函数性质的分析,找出图像上控制形状的关键点,比较简便、迅速、准确地用描绘,熟练掌握函数奇偶性(曲线对称性)的判别:如果函数的定义域D是关于原点对称的,对任意的x∈D,若都有f(x)-f(x),则为奇函数,图像关于坐标原点对称。2、曲面积分的对称性,奇偶性:
区域Q的对称性:
(1)若(x,y,z)∈S则(x,y,一z)∈Q那么0关于xoy面对称。8关于xox面yo面对称类似。
(2) 若(x.y,z)∈Q则(一x,一 y.z)∈Q那么2关于z轴对称。Q关于x轴)轴对称类似。
(3)若(xy.2)∈则(x一)2)(y1一二)和(-.y2)均∈2那么O关于三个坐标面对称。
(4)若(x.y.2)∈Q则(一x-γ→∈Q那么0关于原点对称。
(5)若(x,y,z)∈Q则(,r.2)和(一x、z)∈2那么0关于x和y∞面对称。1.2函数的奇偶性。
(6)若f(x,y,z)在2上满足f(-x,y.z)-干了(x,y.2),称f为o上关于x的奇、偶函数。f关于y或2的奇偶性类似。
(7)若f(x.y.z)在2上满足f(一x,一y,z)干f(x.y.c),称厂为关于:与y的奇偶函数。」关于心与:或)与z的奇偶性类似。
(8)若f(x.y,z)在2上满足F(-x,2-2)元Ff(x.y.2).称厂为关于x和:的奇、偶函数。