高二数学数列必备公式 数列公式怎么用?

[更新]
·
·
分类:行业
2499 阅读

高二数学数列必备公式

数列公式怎么用?

数列公式怎么用?

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,且每一项都不为0(常数),这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差通常用字母d表示。
如果{cn},cnan·bn,其中{an}为等差数列,{bn}为等比数列,那么这个数列就叫做差比数列.

2 4 6 8…… n公式是什么?

偶数的等差数列求和公式:S=[(2 2n)n]/2=n(n 1).推导过程:S=2 4 6 … (2n-2) (2n),S=2n (2n-2) … 4 2.两式相加,得2S=(2 2n) (4 2n-2) … (2n-2 4) (2n 2)=2(n 1) 2(n 1) … 2(n 1) 2(n 1)=2(n 1)n.上式再两边除以2,得S=n(n 1).

几何数列的求和公式?

答:实际上,几何级数的概念来源于公比小于1的等比数列。
将等比数列前n项求和取极限便是几何级数。
其公式为:“首项/(1-公比)”
此处分子为1的原因就是首项为1

数列2n求和公式?

数列{2n},代表的是通项公式为:an二2n,即2,4,6,8,1O,…,2n,…,这是一个公差为d二2的等差数列,也就是偶数数列,那么,a1二2,d二2,这个数列的前n项Sn,可以用下面的公式:Sn二(a1十an)xn/2,其中an二2n,所以,sn二(2十2n)n/2二(1十n)n二n^2十n,即Sn二n^2十n,例如n二10,则S10二1O^2 1O二1OO十1O二11O。

数列求和公式有哪些An?

数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差×等比)、公式法、迭加法。
1、倒序相加法
倒序相加法如果一个数列{an}满足与首末两项等“距离”的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。
2、分组求和法
分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。
3、错位相减法
错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的。
4、裂项相消法
裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。
5、乘公比错项相减(等差×等比)
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。
6、公式法
对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。
7、迭加法
主要应用于数列{an}满足an 1an f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an 1-anf(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。