向量基本知识
什么是知识向量积?
什么是知识向量积?
向量积(带方向):也被称为矢量积、叉积(即交叉乘积)、外积,是一种在向量空间中向量的二元运算。
与点积不同,它的运算结果是一个伪向量而不是一个标量。并且两个向量的叉积与这两个向量都垂直。
叉积的长度 |a × b| 可以解释成以 a 和 b 为边的平行四边形的面积.(|a||b|cos)。一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,则将右手的拇指指向第一个向量的方向,右手的食指指向第二个向量的方向,那么结果向量的方向就是右手中指的方向。
由于向量的叉积由坐标系确定,所以其结果被称为伪向量。
数量积 (不带方向):又称“内积”、“点积”,物理学上称为“标量积”。两向量a与b的数量积是数量|a|·|b|cosθ,记作a·b;其中|a|、|b|是两向量的模,θ是两向量之间的夹角(0≤θ≤π)。即已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b数量积的结果是数值,向量积的结果仍然是向量。
向量的公式有那些?
向量加法与减法的几何表示:平行四边形法则、三角形法则。
向量加法有如下规律:++(交换律) ( c)( ) c(结合律) 0+(-)0.1.实数与向量的积:实数与向量的积是一个向量。
(1)||||?||
(2)当>0时,与的方向相同;当<0时,与的方向相反;当0时,0.(3)若(),则?().两个向量共线的充要条件:
(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b.(2)若(),b()则‖b.平面向量基本定理:若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得e1 e2.2.P分有向线段所成的比:设P1、P2是直线上两个点,点P是上不同于P1、P2的任意一点,则存在一个实数使,叫做点P分有向线段所成的比。
当点P在线段上时,>0;当点P在线段或的延长线上时,<0;分点坐标公式:3.向量的数量积:
(1).向量的夹角:
(2).两个向量的数量积:
(3).向量的数量积的性质:
(4).向量的数量积的运算律:4.主要思想与方法:本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。