积分和微分可以调换顺序吗 复合函数先积分再求导?

[更新]
·
·
分类:行业
3002 阅读

积分和微分可以调换顺序吗

复合函数先积分再求导?

复合函数先积分再求导?

是的,一个函数先积分后求导就等于它本身。但是,一个函数先求导再积分等于它本身加上一个任意常数。因为任意常数的导数都等于0。积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。
积分发展动力源自实际应用中的需求。实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。要求简单几何形体的面积或体积,可以套用已知的公式。比如一个长方体状的游泳池的容积可以用长×宽×高求出。但如果游泳池是卵形、抛物型或更加不规则的形状,就需要用积分来求出容积。物理学中,常常需要知道一个物理量(比如位移)对另一个物理量(比如力)的累积效果,这时也需要用到积分。

函数能否微分和能否积分的关系?

积分和微分通常意义下是互为逆运算的关系,但是一个函数f(x)微分(求导)后再做不定积分,得到的不是原来的函数f(x),而是f(x) 任意常数c。另外对于不连续函数无法微分,但可以积分(勒贝格积分)
他们是微积分的两大部分。微分和积分互为逆运算。
微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的数学分支.微积分是建立在实数、函数和极限的基础上的.微积分最重要的思想就是用微元与无限逼近,好像一个事物始终在变化你不好研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行.

微分和变分有什么区别?

微分和变分的区别,也是本质区别是:微分是同一函数在某微小区间上的增量,变分是定义域中某一值上不同函数的增量。
微分dy中变化的是数值dx,变分δy变化的是函数的形式y(或y δy)。
微分:
在数学中,微分是对函数的局部变化的一种线性描述。微分可以近似地描述当函数自变量的变化量取值作足够小时,函数的值是怎样改变的。比如,x的变化量△x趋于0时,则记作微元dx。
当某些函数的自变量有一个微小的改变时,函数的变化可以分解为两个部分。一个部分是线性部分:在一维情况下,它正比于自变量的变化量△x,可以表示成△x和一个与△x无关,只与函数及有关的量的乘积;在更广泛的情况下,它是一个线性映射作用在△x上的值。另一部分是比△x更高阶的无穷小,也就是说除以△x后仍然会趋于零。当改变量很小时,第二部分可以忽略不计,函数的变化量约等于第一部分,也就是函数在x处的微分,记作df(x)或f(x)dx。如果一个函数在某处具有以上的性质,就称此函数在该点可微。
变分:
变分法(calculus of variations),是处理函数的变量的数学领域,和处理数的函数的普通微积分相对。譬如,这样的泛函可以通过未知函数的积分和它的导数来构造。变分法最终寻求的是极值函数:它们使得泛函取得极大或极小值。有些曲线上的经典问题采用这种形式表达:一个例子是最速降线,在重力作用下一个粒子沿着该路径可以在最短时间从点A到达不直接在它底下的一点B。在所有从A到B的曲线中必须极小化代表下降时间的表达式。