判断函数可导的方法
怎么证明一个函数可导?
怎么证明一个函数可导?
如果一个函数左导和右导都存在且左倒等于右导,则存在。
怎么在确定一个函数在一段区间的可导性?
1、如果是初等函数,则在定义域上用复合函数求导,可直接求导,则导数存在;对于复合函数求导表达式中,如果出现有分母,则分母为0的点,应用导数定义判断是否可导。
2、如果分段函数,则分界点处是否可导,应用导数定义判断是否可导
如何判断函数的可导性?
即设yf(x)是一个单变量函数, 如果y在xx0处左右导数分别存在且相等,则称y在xx[0]处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数。
1、设f(x)在x0及其附近有定义,则当a趋向于0时,若 [f(x0 a)-f(x0)]/a的极限存在, 则称f(x)在x0处可导。
2、若对于区间(a,b)上任意一点m,f(m)均可导,则称f(x)在(a,b)上可导。 函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。 可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。
判断一个分段函数的可导性步骤是什么?
第一步:在要判断可导性的点的左右两端分别计算x趋向于这个点时函数的极限值,判定两个极限值是否存在且相等,若两个极限值不相等、其中有一个不存在或两个都不存在,则函数在该点处不连续,也就一定不可导;若两个极限值存在且相等,就进行下一步。
第二步:用导数的定义式,分别计算x从左和从右两个方向趋向于该点的极限值,若两个极限值都存在且相等,则判断为函数在该点处可导,且导数就等于该极限值;若两个极限值不相等、两个极限值中有一个不存在或两个极限值均不存在,则函数在该点处不可导。
对于自变量x的不同的取值范围,有着不同的解析式的函数。它是一个函数,而不是几个函数;分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集。
扩展资料:
分段函数有几段它的图像就由几条曲线组成,作图的关键就是根据每段函数的定义区间和表达式在同一坐标系中作出其图像,作图时要注意每段曲线端点的虚实,而且横坐标相同之处不可有两个以上的点。
先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止。
判断分段函数的奇偶性的方法:先看定义域是否关于原点对称,不对称就不是奇(偶)函数,再由x0,-x0,分别代入各段函数式计算f(x)与f(-x)的值,若有f(x)-f(-x),当x0有定义时f(0)0,则f(x)是奇函数;若有f(x)f(-x),则f(x)是偶函数。