极限存在的充要条件及应用 单调有界函数必有极限的重要推论?

[更新]
·
·
分类:行业
3524 阅读

极限存在的充要条件及应用

单调有界函数必有极限的重要推论?

单调有界函数必有极限的重要推论?

“单调有界数列必有极限”是微积分学的基本定理之一.数列的极限比较简单,都是指当n→∞(实际上是n→ ∞)时的极限,所以我们只要说求某某数列的极限(不必说n是怎么变化的),大家都明白的.
函数的极限就比较复杂,如果只说求某某函数的极限,别人是不明白的,还必须要指明自变量(例如x)是如何变化的.
考虑自变量的变化趋势,有x→x0(x0是某个实数,这有多少种)与x→∞;细分的话,还有x从左边趋向于x0、从右边趋向于x0、趋向于正无穷大、趋向于负无穷大.
还不要忘记,我们研究函数的极限是有前提条件的:
研究x→x0时的极限,要求函数在x0某个去心邻域内有定义;研究x→∞时的极限,要求存在正数X,当|x|X时函数有定义.
只有在满足前提条件下,才可以谈这个函数此时的极限存在与不存在.
你只给出函数单调有界,既不知道函数的定义域是怎样的,又不知道自变量如何变化,这样情形下谈函数的极限根本就没有丝毫的意义.

用洛必达求导前怎么判断极限是0/0型还是无穷/无穷,还是都不是?

1.0/0型 ∞/∞( -都行) 2.核心条件是用洛必达法则分子分母求导后极限存在或者∞,不存在洛必达法则就失效,就得找其他方法计算极限。
比如x 趋向于0,lim sinx /x lim cosx /11
x 趋向于∞,lim (sinx x )/x洛必达就失效

为什么可导的函数一定要连续?

一、连续与可导的关系:
1. 连续的函数不一定可导;
2. 可导的函数是连续的函数;
3.越是高阶可导函数曲线越是光滑;
4.存在处处连续但处处不可导的函数。
左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限右极限(左右极限都存在)。连续是函数的取值,可导是函数的变化率,当然可导是更高一个层次。
二:有关定义:
1. 可导:是一个数学词汇,定义是设yf(x)是一个单变量函数, 如果y在xx_0处存在导数yf(x),则称y在xx_0处可导。
2. 连续:设函数yf(x)在点x0的某个邻域内有定义。如果当自变量Δx趋向于0时。相应的函数改变量Δy也趋向于0, 则称函数yf(x)在点x0处连续。
若只考虑实变函数,那么要是对于一定区间上的任意一点,函数本身有定义,且其左极限与右极限均存在且相等,则称函数在这一区间上是连续的。
连续分为左连续和右连续。在区间每一点都连续的函数,叫做函数在该区间的连续函数。