回归线方程的计算方法 f统计量中回归平方是什么?

[更新]
·
·
分类:行业
2760 阅读

回归线方程的计算方法

f统计量中回归平方是什么?

f统计量中回归平方是什么?

回归平方和
回归平方和,是反映自变量与因变量之间的相关程度的偏差平方和。用回归方程或回归线来描述变量之间的统计关系时,实验值yi与按回归线预测的值Yi并不一定完全一致。
各实验点(xi,yi)并不一定都落在回归线上,各实验点偏离回归线的程度,可用它们的总偏差平方和(总平方和)TSS(Total Sum of Squares)来表征,TSS∑(?-?)2 ∑(u)2,其中?是各实验值yi的平均值 ,uy-?
基本信息
表达式ESS∑(y-?)^2应用数理学科(数学,计量经济学等)作用反映自、因变量程度偏差平方和。
目录
基本内容
RSS(Residual Sum of Squares)∑(u) 称为残差平方和,ESS (Explained Sum of Squares)∑(?-?) 称为回归平方和。残差平方和越小,自变量与因变量之间的相关性越好。
此外,MSR(回归均方误)RSS/1 MSE(残差均方误)ESS/n-2,其中n为回归方程式中变量组的个数。

回归线系数公式?

线性回归方程公式:b(x1y1 x2y2 ...xnyn-nXY)/(x1 x2 ...xn-nX)。线性回归方程是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一。

可决系数可以说明回归方程的?

可决系数是测定多个变量间相关关系密切程度的统计分析指标,它也是反映多个自变量对因变量的联合的影响程度。可决系数越大,自变量对因变量的解释程度越高,自变量引起的变动占总变动的百分比高。观察点在回归直线附近越密集。可决系数的取值范围在0到1之间,它是一个非负统计量。随着抽样的不同而不同,既是随样本而变动的统计量。
可决系数有如下特点:
1.可决系数是非负的统计量
2.可决系数的取值范围:0ltR^2lt1
3.可决系数是样本观测值的函数,可决系数R^2是随机抽样而变动的随机变量。为此,对可决系数的统计可靠性也应进行检验。
如果样本回归线对样本观测值拟合程度越好,各样本观测点与回归线靠得越近,由样本回归做出解释的离差平方和与总离差平方和越相近;反之,拟合程度越差,相差越大。
可决系数的计算式: 回归平方和(ESS)在总变差(TSS)中所占的比重称为可决系数,可决系数可以作为综合度量回归模型对样本观测值拟合优度的度量指标。可决系数越大,说明在总变差中由模型作出了解释的部分占的比重越大,模型拟合优度越好。反之可决系数小,说明模型对样本观测值的拟合程度越差。