三角形垂心定理知识点
三角形垂线定理?
三角形垂线定理?
三角形的垂心定理:在三角形ABC中,它的三条高交于一点。
三角形垂心的性质定理1:
锐角三角形的垂心是以三个垂足为顶点的三角形的内心。
三角形垂心性质定理2:
若三角形的三个顶点都在函数的图象上,则它的垂心也在这个函数图象上。
三角形垂心性质定理3:
三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。
三角形垂心性质定理4:
锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。
三角形垂心性质定理5:
H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。
①中位线定理
三角形的中位线平行于第三边且等于第三边的一半.
推论:经过三角形一边中点且平行于另一边的直线,必平分第三边。
②中线定理
三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍。
③勾股定理
勾股定理(毕达哥拉斯定理)内容为:在任何一个直角三角形中,两条直角边的长平方之和一定等于斜边长的平 方。几何语言:若△ABC满足∠ABC90°,AB^2 BC^2AC^2;
勾股定理的逆定理也成立,即两条边长的平方之和等于第三边长的平方,则这个三角形是直角三角形
④射影定理
射影定理(欧几里得定理)内容为:在任何一个直角三角形中,作出斜边上的高,则斜边上的高的平方等于高所在斜边上的点到不是两直角边垂足的另外两顶点的线段长度的乘积。
④正弦定理
内容:在任何一个三角形中,每个角的正弦与对边之比等于三角形面积的两倍与三边边长和的乘积之比
⑤余弦定理
内容:在任何一个三角形中,任意一边的平方等于另外两边的平方和减去这两边的2倍乘以它们夹角的余弦
垂心的定义及性质?
〈1〉定义:是三角形三条高的交点。
〈2〉性质:
[性质1]锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外。
[性质2]三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心。
[性质3]垂心O关于三边的对称点,均在△ABC的外接圆圆上。
内心、外心、重心、垂心定义及性质总结?
三角形的五心
三角形的三条中线交于一点,这点到顶点的距离是它到对边距离的2倍,上述交点叫做三角形的重心,上述定理为重心定理。
外心定理 三角形的三边的垂直平分线交于一点,这点叫做三角形的外心。
垂心定理 三角形的三条高交于一点,这点叫做三角形的垂心。
内心定理 三角形的三内角平分线交于一点,这点叫做三角形的内心。
旁心定理 三角形的一内角平分线与另外两顶点处的外角平分线交于一点,这点叫做三角形的旁心。三角形有三个旁心。
可以根据这些“心”的定义,得到很多重要的性质:
(1)重心和三顶点的连线所构成的三个三角形面积相等;
(2)外心扫三顶点的距离相等;
(3)垂心与三顶点这四点中,任一点是其余三点构成的三角形的垂心;
(4)内心、旁心到三边距离相等;
(5)垂心是三垂足构成的三角形的内心,或者说,三角形的内心是它旁心三角形的垂心;
(6)外心是中点三角形的垂心;
(7)中心也是中点三角形的重心;
(8)三角形的中点三角形的外心也是其垂足三角形的外心。
对于三角形“五心”的理解,希望你先理解书本上的定义和定理,然后在练习的过程中训练根据定义找特点的思维习惯,自己多总结,逐渐提高解决复杂几何题的能力