怎样用二阶导数求曲线拐点
初一拐点问题的公式?
初一拐点问题的公式?
拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
可以按下列步骤来判断区间I上的连续曲线yf(x)的拐点:
⑴求f(x);
⑵令f(x)0,解出此方程在区间I内的实根,并求出在区间I内f(x)不存在的点;
⑶对于⑵中求出的每一个实根或二阶导数不存在的点x,检查f(x)在这个点x左右两侧邻近的符号,那么当两侧的符号相反时,这个点(x,f(x))是拐点,当两侧的符号相同时,(x,f(x))不是拐点。
拐点方程怎么求?
1拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点,即连续曲线的凹弧与凸弧的分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号,由正变负或由负变正或不存在。
2可以按下列步骤来判断区间I上的连续曲线yf(x)的拐点:
31、求f#39#39(x)。
42、令f#39#39(x)0,解出此方程在区间I内的实根,并求出在区间I内f#39#39(x)不存在的点。
53、对于2中求出的每一个实根或二阶导数不存在的点x,检查f#39#39(x)在这个点x左右两侧邻近的符号,那么当两侧的符号相反时,这个点(x,f(x))是拐点,当两侧的符号相同时,(x,f(x))不是拐点。
二阶导大于等于0有拐点吗?
不一定。有可能是极值点。例如yx^4(x的4次方)。这个函数在x0点的二阶导数就是0,但是x0是这个函数的极值点而不是拐点。直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
1拐点的求法
可以按下列步骤来判断区间I上的连续曲线yf(x)的拐点:
⑴求f(x);
⑵令f(x)0,解出此方程在区间I内的实根,并求出在区间I内f(x)不存在的点;
⑶对于⑵中求出的每一个实根或二阶导数不存在的点X0检查f(x)在X0左右两侧邻近的符号,那么当两侧的符号相反时,点(X0,f(X0))是拐点,当两侧的符号相同时,点(X0,f(X0))不是拐点。
2二阶导数是什么意思
二阶导数是一阶导数的导数,从原理上,它表示一阶导数的变化率;从图形上看,它反映的是函数图像的凹凸性。二阶连续可导的意思是指函数不仅二阶可导,而且它的二阶导数是连续的,一定要注意这里的连续不是说该函数连续,而是说该函数的二阶导数是连续的。