大学线性代数行列式性质总结
转型行列式是什么?
转型行列式是什么?
转型行列式是指的:转置行列式是将行的项转为列的项,列的项转为行的项,比方说a21变成a12。 行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。
无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。 扩展资料 行列式的性质:
1、行列式A中某行(或列)用同一数k乘,其结果等于kA。
2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
3、若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
4、行列式A中两行(或列)互换,其结果等于-A。
5、把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
线性代数知识点完整归纳?
线性代数是代数学的一个分支,主要处理线性关系问题。
线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。
每一个线性空间都有一个基。
对一个 n 行 n 列的非零矩阵 A。
矩阵非奇异(可逆)当且仅当它的行列式线性代数。
行列式与矩阵的区别与联系?
1、行列式的实质是一个数字,而矩阵是若干个数字的一种表现形式,2者有这天然的区别;
2、两者又不是完全没有联系。行列式的行和列的个数相等,而矩阵的行和列的个数可以相等也可以不相等。如果矩阵的行和列不相等,那么行列式和矩阵之间顶多只有半毛钱关系,大部分情况下一毛钱关系都没有。只有当矩阵的行和列相等时,行列式和矩阵的关系才变得多了起来,有五毛钱关系吧,呵呵。
3、当矩阵的行和列相等时,它的行列式能体现出这个矩阵的一些性质。例如,一个矩阵如果有逆矩阵的话,那么它的行列式形式就≠0;这也等价于这个矩阵的秩刚好等于矩阵的阶数。
4、当矩阵多行和列不相等时,一般情况下,在求解方程组的解时候他们之间才会有关联。即当矩阵的列数比行数多1时,可以看成一个线性方程组系数和方程的值构成了系数增广矩阵。例如有一个4×5的矩阵,可以看成是4×4阶矩阵外加一个4×1阶矩阵的增广矩阵。其中这个4×4阶部分,如果它的行列式形式的值≠0,且那个4×1阶部分为非零,那么这个线性方程组是有唯一解的。如果这个4×4阶部分,如果它的行列式形式的值≠0,且那个4×1阶部分为0矩阵,那么这个线性方程组是有有唯一的0解。如果这个4×4阶部分,如果它的行列式形式的值0,且那个4×1阶部分为0矩阵,那么这个线性方程组是有无穷解的。