平面曲线的面积可以用二重积分
格林公式求面积时到底用哪个?
格林公式求面积时到底用哪个?
不是这个意思。格林公式一般不用来算面积,它的作用是化简第二类曲线积分,在这个过程中,如果用格林公式化出来的二重积分的被积函数是个常数,那么把常数提出来,剩下的就刚好等于这个区域的面积。
ps二重积分一般也不算面积,定义算的是曲顶柱体的体积,只有当被积函数是常数,才可以化简理解为底面面积。
曲线积分怎么计算?
曲线积分公式:wGh。在数学中,曲线积分是积分的一种。积分函数的取值沿的不是区间,而是特定的曲线,称为积分路径。曲线积分有很多种类,当积分路径为闭合曲线时,称为环路积分或围道积分。曲线积分可分为:第一类曲线积分和第二类曲线积分。
曲线,是微分几何学研究的主要对象之一。直观上,曲线可看成空间质点运动的轨迹。微分几何就是利用微积分来研究几何的学科。为了能够应用微积分的知识,我们不能考虑一切曲线,甚至不能考虑连续曲线,因为连续不一定可微。这就要我们考虑可微曲线
二重积分在极坐标下的表达式啥意思?
极坐标系里的二重积分r是指极坐标的极径,表示平面坐标点到原点的距离。
在极坐标中求二重积分的注意事项:
1、在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。
2、为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以ra,即O为圆心r为半径的圆和以θb,O为起点的射线去无穷分割D,设Δσ就是r到r dr和从θ到θ dθ的小区域,其面积为
格林公式怎么理解?正负向又是什么意思啊?不理解这个公式,大神讲解?
格林公式把第二类曲面积分转换为二重积分。因为第二类曲线积分的积分路径是有方向的,所以格林公式需要考虑正、反向,书上公式是在正向也就是逆时针方向条件下给出的。如果积分曲线的路径是顺时针方向,那么最后结果得加个负号。
格林公式是一个数学公式,它描述了平面上沿闭曲线L对坐标的曲线积分与曲线L所围成闭区域D上的二重积分之间的密切关系。 一般用于二元函数的全微分求积。
在平面闭区域D上的二重积分,封闭路径的曲线积分可以用二重积分来计算。如区域D不满足以上条件,可在区域内引进一条或几条辅助曲线把它分划成几个部分区域,使得每个部分区域适合上述条件,仍可证明格林公式成立。
扩展资料:
格林公式的使用条件:
1、区域D必须是单连通的,也就是说区域D是连续的,通俗讲,区域D中没有“洞”;
2、组成区域D的曲线必须是连续的;
3、曲线L(可以是分段组成)具有正向规定;
4、被积函数在D中具有连续一阶连续